GEMSTONE Thesis Proposal Defense **TEAM COGEN**

Introduction

- Justification for energy research
 - Desperate need to reduce carbon emissions
 - Presidents' Climate Commitment
 - Current energy systems are inefficient
- Why CHP?
 - Immediate practicality
 - Economic efficiency
 - Technological availability
 - Intermediate tool

Research Questions

- How can Combined Heat and Power minimize carbon emissions at a large university campus?
- What CHP system is best suited for the University of Maryland?

What is CHP?

 Simultaneous or sequential generation of multiple forms of useful energy (usually electrical and thermal) in a single, integrated system.

Benefits

- High overall thermal efficiency
- Simultaneous production of thermal & electrical energy
- Minimal transmission & distribution losses

CHP Diagram

Combustion Turbine with Heat Recovery Steam Generator

http://www.utilities.cornell.edu/image/Heat-diagram-9-13-06.jpg

Potential for Improvement

- Turbine selection
 - Solar Mercury 50
- Plant operating procedures
- Supplemental components
 - Intercooling
 - Reheat + second stage turbine
 - Regeneration
- Better performance in smaller machines

Project Overview

Chapter 1 Chapter 2

Chapter 1

Determine the best efficiency among current university CHP plants and demonstrate achievable performance increases.

Surveying

 Survey universities nationwide to gather and evaluate CHP performance data

Analyzing University CHP Systems

Analyzing University CHP Systems

Modeling

Design a CHP system / simulate performance

Modeling

- Tweak simulation to improve realism
- Simulate concept system and compare to best current performance achieved

Chapter 2

Make specific recommendations to the University of Maryland regarding improvements in efficiency of its energy generation system.

Improving UMD's Energy Infrastructure

- Evaluate best technology available on today's market
- Conceive a technologically and economically achievable CHP plant
- Assess performance gains under two scenarios
 - Current plant is replaced with a more efficient one
 - A new plant is constructed to supplement the first

Economic Analysis

- Current economic considerations
 - Costs of purchasing electricity from PEPCO
 - Fuel price and availability
- Estimate costs for potential CHP system
- Cost-benefit analysis
 - Establish payback period

Policy

- The Public Utilities Regulatory Policies Act (PURPA) of 1978
- 2005 Energy Policy Act
- UMD Climate Action Plan
- Greenhouse Gas Emissions Reduction Act of 2009
- UMD's relationship to PEPCO

Looking Forward

- Finish university surveys
- Establish best operating achievements of current systems
- Continue / wrap up basic background research
- →Design and model ideal CHP system

Questions / Suggestions